Bezpečnost | Umělá inteligence | Strojové učení

Rozmazali jste text a tvář kvůli ochraně soukromí? Neuronová síť to stejně rozlouskne

  • Pixelizujete citlivý text?
  • Rozmazáváte tváře ve fotografiích?
  • Za pár let to bude málo, stroje to totiž díky učení prokouknou

Čas od času prolétne webem varování, které předvídá hotovou apokalypsu současné digitální kryptografie v případě, že člověk skutečně zhotoví funkční a univerzální kvantový počítač. Takový stroj by totiž mohl v nesprávných rukou během okamžiku spočítat extrémně složité úlohy s prvočísly, na kterých stojí a padají bezpečnostní certifikáty a šifrovací algoritmy počínaje bankovním sektorem a konče každodenním surfováním na stránkách HTTPS.

Zatím můžeme být klidní, současné experimentální kvantové výpočetní stroje totiž mají k jakémusi univerzálnímu počítači asi tak daleko jako vězeň severokorejského koncentračního tábora k Facebooku.

V nejbližších letech bychom se spíše než kvantových počítačů měli obávat něčeho zcela jiného – stále dokonalejších technik strojového učení a neuronových sítí, které dokážou hotové divy i bez superpozice qubitů a kvantového paralelismu.

Jak strojově rozpoznat rozmazanou tvář

Dokladem budiž čerstvá studie (PDF) z počátku září, za kterou stojí skupina vědců z Cornell Tech a Texaské univerzity v Austinu, a které se věnuje technologii odhalování rozmazaných fotografií pomocí strojového učení.

Každý to dobře zná. Čas od času potřebujeme skrýt na fotografii nějaký text nebo lidský obličej, a tak jej buď zničíme mozaikovým efektem, který oblast rozčtverečkuje, anebo klasickým rozmazáním.

Klepněte pro větší obrázek Klepněte pro větší obrázek
Pixelizované tváře policistů při zátahu a rozmazaný obličej ve videu YouTube. Neuronová síť z Cornell Tech a Texaské univerzity v Austinu dokázala připojit tyto rozmazané podoby tváří k těm původním s 57-72 % přesností.

Problém spočívá v tom, že i při poměrně vysoké síle daného efektu v obrazu stále zůstává určitý korelační vztah k originálu. Lidské oko jej pochopitelně nepozná, ale stroj ano. S příchodem konvolučních neuronových sítí je to přitom relativně snadné. Stačí, vzít nějaký velký soubor fotografií osob, použít několik podobných destruktivních efektů a nechat neurnovou síť učit rozpoznávat tyto jemné korelační nuance, které jsou pro lidský mozek naprosto neviditelné.

Vědci ze zmíněných univerzit to chtěli vyzkoušet v praxi, a tak použili čtyři fotografické databáze pro strojové učení (MNIST, CIFAR-10, AT&T a FaceScrub) a každý snímek zničili sedmi metodami – čtyřmi úrovněmi mozaikování a třemi úrovněmi nově navržené techniky P3, která má anonymizovat citlivé informace ve fotografiích JPEG.

Klepněte pro větší obrázek
Čtyři databáze fotografií a sedm metod anonymizace pomocí mozaikování a techniky P3. Právě s tímto nastavením se neuronová síť učila.

Jejich konvoluční neuronová síť se poté učila, jak se zdeformovaný snímek mění vůči svému originálu podle síly efektu, a jelikož v něm i tak často zůstal zřetelný vztah k originálu, software si mohl vytvořit model, kdy jednomu zdeformovanému snímku odpovídaly originály s určitými parametry. Stačilo je pouze vypsat.

Pokud by tedy měli vědci mnohem rozsáhlejší soubory – třeba snímky ze všech cestovních pasů, bezpečnostních kamer a identifikačních karet, jejich software by mohl s určitou přesností identifikovat jakýkoliv zdeformovaný obličej. A jaká přesnost by to vlastně byla?

Neuronová síť identifikovala zcela rozmazanou tvář

Pokud neuronová síť věděla, jakým typem deformace byla fotografie zničená, dokázala na testovacím souboru odhalit původní fotografii s přesností, která mnohdy dosahovala až hodnot 90-100 %. Pokud to však netušila a vědci jí předložili náhodný snímek, klesla úspěšnost 0,19-50 %. I to je však ohromně vysoké číslo – přinejmenším s ohledem na to, že technika má člověka a text prostě schovat. Na 100 % schovat!

Klepněte pro větší obrázek
Výsledky testování pro jednotlivé databáze a techniky anonimizace

Vzhledem k tomu, že je obor strojového učení a neuronových sítí stále v plenkách, a přesto není týdne, abychom si nepřečetli zase o dalším úspěšném experimentu, který posunul laťku o něco výše, je docela možné, že za pár let dokáže na klasickém výkonném superpočítači dříve opravdu nemyslitelné kousky.

Diskuze (30) Další článek: Tim Cook: rozšířená realita bude populárnější než virtuální realita

Témata článku: Technologie, Bezpečnost, Výzkum, Umělá inteligence, Síť, Strojové učení, Neuronová síť, Soukromí, Tvář, Nuance, Toronto, Lidské oko, Koncentrační tábor, JST, Čerstvá studie, Původní úroveň, Vědec, Yann LeCun, Toro, Austin, Testovací soubor, TeX, TV +, Skupina vědců, Anonymizace


Určitě si přečtěte

Vyrobíme si falešný Mac mini za tisícovku. Stačí Raspberry Pi a 3D tiskárna

Vyrobíme si falešný Mac mini za tisícovku. Stačí Raspberry Pi a 3D tiskárna

** Vyzkoušíme Raspberry Pi 4 s iRaspbianem ** Operační systém vypadá skoro jako macOS ** Vše strčíme do vlastní stylové krabice

Jakub Čížek | 31

WindowsFX: Nainstalujte to mamce a taťkovi. Ani nepoznají, že to je Linux

WindowsFX: Nainstalujte to mamce a taťkovi. Ani nepoznají, že to je Linux

** Po dvou měsících tu máme další linuxovou kopii ** Tentokrát jde o imitaci Desítek ** Sestavili ji brazilští geekové nad Ubuntu

Jakub Čížek | 135

Nejlepší programy z roku 2000: Další várka zapomenutých legend, které jste měli v PC

Nejlepší programy z roku 2000: Další várka zapomenutých legend, které jste měli v PC

** Pokračujeme ve vzpomínání na prehistorické programy ** Pročetli jsme vaše tipy v diskuzi ** A všechny ty vykopávky spustili na Windows 2000

Jakub Čížek | 74

Zapomeňte na kometu, české nebe každý den křižují mnohem zajímavější kousky

Zapomeňte na kometu, české nebe každý den křižují mnohem zajímavější kousky

** České nebe každý den křižuje hromada exotických letounů ** Na populární mapě Flightradar24 je ale nenajdete ** Jsou to vojenské letouny USA, UK a NATO

Jakub Čížek | 37


Aktuální číslo časopisu Computer

Megatest: nejlepší notebooky do 20 000 Kč

Test 8 levných IP kamer

Jak vybrat bezdrátová sluchátka

Testujeme Android 11