Robotické paže od Googlu se učí sbírat věci jako člověk

  • Google objevil způsob, jak přiblížit schopnosti robotické paže lidské ruce
  • Klíčem není programování, ale samostatné učení pomocí neuronových sítí metodou pokus-omyl
  • Bez obrovského množství dat to ale nejde
Robotické paže od Googlu se učí sbírat věci jako člověk

Některé věci které jako lidé považujeme za jednoduché a běžné, jsou nesmírně náročné pro počítače a roboty. Důvodem ale není daná dovednost, ale množství dat a způsobu učení.

Typickým příkladem je sběr objektů rukama, což se učíme několik let po narození a náš mozek se na obrovském počtu pokusů snaží v rámci vlastní neuronové sítě naučit správnou koordinaci rukou a prstů dle obrazu z očí. A jak prezentovali vědci z robotické laboratoře Googlu, přesně to je ten správný směr, jak vyřešit stejný problém i u robotické paže.

14 robotů a statisíce pokusů

Vědci se dlouho snaží pokročit v oblasti sběru objektů pomocí robotické paže, což je jedna z velmi náročných disciplín robotiky. Pořádá se v ní i pravidelná soutěž pod záštitou Amazonu (Picking Challenge), který by takové řešení mohl do budoucna použít k nahrazení lidí ve vlastních skladech. I když je totiž spousta věcí už zajišťována automaticky a robotickými stroji, výběr předmětů z regálů je stále nutné řešit pomocí člověka, který dokáže předmět rychle rozpoznat, rychle vyndat a dát do balíčku k odeslání.

Aby se urychlil vývoj nového konceptu s využitím hlubokých neuronových sítí (CNN), použilo se celkem 14 dostupných univerzálních robotických paží. Každá z nich obsahuje jednu barevnou kameru (žádný trojrozměrný pohled, pouze 2D obraz) a nastavitelnou robotickou „ruku“ v sedmi směrech se dvěma robotickými „prsty“.

Jednotlivé paže měly vlastní truhlu, ve které byly rozházené různé předměty lišící se velikostí, tvary, barvami, hmotností i materiálem. Každá paže měla navíc mírně odlišné nastavení světla a dalších maličkostí, aby se rozšířila různorodost zpracovávaných dat při učení.

Klepněte pro větší obrázek
Různé světelné podmínky jednotlivých robotů

Z počátku paže napojené na zmíněné neuronové sítě neumí chytnout a zvednout žádný předmět. Teprve postupným pokusy, kdy se systém učil jaký pohyb je nutný k danému úspěšnému cíli, začaly se statistiky zlepšovat.

Počet pokusů o sbírání objektů byl ale obrovský – teprve po přibližně 800 000 takových pokusů o sebrání se začíná objevovat schopnost pokročilejší inteligence, která už v reálném čase dokáže s velmi vysokou pravděpodobností zachytit jakýkoli předmět pak ho třeba přesunout vedle a úspěšně tak dokončit úkol. Dokonce i takový, který před tím nikdy nebral. Systém se v této fázi i sám naučí například uvolnit cestu k objektu, který chce vzít.

Zlepšování každým dnem

Pokusy běžely každý den několik měsíců, přičemž data z každého dne se použila pro učení na následující den každého samostatného robota. V přepočtu se jednalo o 3 000 hodin učení, což je vzhledem k tomuto náročnému úkolu opravdu hodně dat.

A v tom je hlavní odlišnost od dřívějších přístupů. Jak se pro web Ieee.org vyjádřil Sergey Levine z Googlu, výzkum ukazuje, že v rámci těchto úkonů je efektivnější cesta minimálních znalostí na začátku a samostatné učení z obrovského množství dat, respektive vlastních pokusů. Zjednodušeně řečeno, se téměř odstraňuje programování člověkem a umělá neuronová síť se sama naučí, co potřebuje. Zkrátka „lidský přístup“.

Klepněte pro větší obrázek
Sbírané předměty byly různého kancelářského charakteru, systémy si ale musely poradit i se zcela novými objekty

Stejně jako u člověka je ale potřeba hodně dat respektive zkušeností k tomu, se dostat na určitou úroveň, která už si poté dokáže rychleji poradit s novějšími případy. A zmíněných 800 000 sebrání předmětů je stále jen začátek, protože cvičení může pokračovat ještě dále.

Zajímavostí totiž je, že se systém sám naučil i specifické techniky uchycení podle druhu materiálu – třeba podle toho, jestli je měkký nebo tvrdý. Ukazuje to na budoucí možnosti, které podobné systémy založené na umělých neuronových sítích budou schopné „vymyslet“ i v rámci složitějších úloh.

Podrobné informace k výzkumu naleznete v oficiálnímu materiálu (PDF).

Témata článku: Google, Technologie, Umělá inteligence, Roboti, Neuronová síť, Cvičení, Paže, Robotika, Success, Amazon Video, Uchycená kamera, Sergey, IEEE Spectrum, Člověk, Správný směr, Abus kancelářské potřeby, Pokus, Věc, Různé materiály, Feedback, Scala

17 komentářů

Nejnovější komentáře

  • ijs 4. 4. 2016 12:03:08
    DOKUD nebude umět robot, nalejt ale nepřelet, ani nedolejt vodu do...
  • Roman Vronek 3. 4. 2016 22:38:16
    Jasně viditelný balíček kondomů je podle vás "předmět kancelářského...
  • Evžen Supruk 3. 4. 2016 3:46:32
    Z dlouhodobého hlediska to může vypadat i tak že až se to dostane do...
Určitě si přečtěte

CCleaner obsahuje softwarovou havěť! Tvůrcům se do kódu dostali hackeři

CCleaner obsahuje softwarovou havěť! Tvůrcům se do kódu dostali hackeři

** Masově oblíbený program pro softwarovou očistu Windows ovládli hackeři ** Narušení se podařilo zavčas odhalit, unikla jen data o počítačích uživatelů ** Je paradoxní, že CCleaner byl slabě zabezpečen, když jej letos koupil Avast

18.  9.  2017 | David Polesný | 45

Jak tankují bombardéry: Z létající benzinky šest kilometrů nad Českem

Jak tankují bombardéry: Z létající benzinky šest kilometrů nad Českem

** Bombardéry tankují z létající benzinky Boeing KC-135 Stratotanker ** Tu americké letectvo pro doplňování paliva jiných letounů ve vzduchu využívá už více jak půlstoletí ** Tankování probíhá přes speciální výsuvné čerpací rameno na zádi

17.  9.  2017 | Natoaktual.cz

Noční strana Venuše vydala další tajemství

Noční strana Venuše vydala další tajemství

18.  9.  2017 | Jiří Černý

iPhone nastupuje do důchodu. Apple už se připravuje na další éru

iPhone nastupuje do důchodu. Apple už se připravuje na další éru

** Apple představil zcela nový iPhone pro další „dekádu“, která je ale jeho poslední ** Trh se postupně překlopí na nový typ výpočetního zařízení ** Budoucností je chytrá nositelnost a brýle s rozšířenou realitou

14.  9.  2017 | Karel Javůrek | 73


Aktuální číslo časopisu Computer

Vyplatí se ještě těžit kryptoměny?

Velký test studentských notebooků

Test pěti levných soundbarů

Nejlepší chytré hodinky