Robotické paže od Googlu se učí sbírat věci jako člověk

  • Google objevil způsob, jak přiblížit schopnosti robotické paže lidské ruce
  • Klíčem není programování, ale samostatné učení pomocí neuronových sítí metodou pokus-omyl
  • Bez obrovského množství dat to ale nejde
Robotické paže od Googlu se učí sbírat věci jako člověk

Některé věci které jako lidé považujeme za jednoduché a běžné, jsou nesmírně náročné pro počítače a roboty. Důvodem ale není daná dovednost, ale množství dat a způsobu učení.

Typickým příkladem je sběr objektů rukama, což se učíme několik let po narození a náš mozek se na obrovském počtu pokusů snaží v rámci vlastní neuronové sítě naučit správnou koordinaci rukou a prstů dle obrazu z očí. A jak prezentovali vědci z robotické laboratoře Googlu, přesně to je ten správný směr, jak vyřešit stejný problém i u robotické paže.

14 robotů a statisíce pokusů

Vědci se dlouho snaží pokročit v oblasti sběru objektů pomocí robotické paže, což je jedna z velmi náročných disciplín robotiky. Pořádá se v ní i pravidelná soutěž pod záštitou Amazonu (Picking Challenge), který by takové řešení mohl do budoucna použít k nahrazení lidí ve vlastních skladech. I když je totiž spousta věcí už zajišťována automaticky a robotickými stroji, výběr předmětů z regálů je stále nutné řešit pomocí člověka, který dokáže předmět rychle rozpoznat, rychle vyndat a dát do balíčku k odeslání.

Aby se urychlil vývoj nového konceptu s využitím hlubokých neuronových sítí (CNN), použilo se celkem 14 dostupných univerzálních robotických paží. Každá z nich obsahuje jednu barevnou kameru (žádný trojrozměrný pohled, pouze 2D obraz) a nastavitelnou robotickou „ruku“ v sedmi směrech se dvěma robotickými „prsty“.

Jednotlivé paže měly vlastní truhlu, ve které byly rozházené různé předměty lišící se velikostí, tvary, barvami, hmotností i materiálem. Každá paže měla navíc mírně odlišné nastavení světla a dalších maličkostí, aby se rozšířila různorodost zpracovávaných dat při učení.

Klepněte pro větší obrázek
Různé světelné podmínky jednotlivých robotů

Z počátku paže napojené na zmíněné neuronové sítě neumí chytnout a zvednout žádný předmět. Teprve postupným pokusy, kdy se systém učil jaký pohyb je nutný k danému úspěšnému cíli, začaly se statistiky zlepšovat.

Počet pokusů o sbírání objektů byl ale obrovský – teprve po přibližně 800 000 takových pokusů o sebrání se začíná objevovat schopnost pokročilejší inteligence, která už v reálném čase dokáže s velmi vysokou pravděpodobností zachytit jakýkoli předmět pak ho třeba přesunout vedle a úspěšně tak dokončit úkol. Dokonce i takový, který před tím nikdy nebral. Systém se v této fázi i sám naučí například uvolnit cestu k objektu, který chce vzít.

Zlepšování každým dnem

Pokusy běžely každý den několik měsíců, přičemž data z každého dne se použila pro učení na následující den každého samostatného robota. V přepočtu se jednalo o 3 000 hodin učení, což je vzhledem k tomuto náročnému úkolu opravdu hodně dat.

A v tom je hlavní odlišnost od dřívějších přístupů. Jak se pro web Ieee.org vyjádřil Sergey Levine z Googlu, výzkum ukazuje, že v rámci těchto úkonů je efektivnější cesta minimálních znalostí na začátku a samostatné učení z obrovského množství dat, respektive vlastních pokusů. Zjednodušeně řečeno, se téměř odstraňuje programování člověkem a umělá neuronová síť se sama naučí, co potřebuje. Zkrátka „lidský přístup“.

Klepněte pro větší obrázek
Sbírané předměty byly různého kancelářského charakteru, systémy si ale musely poradit i se zcela novými objekty

Stejně jako u člověka je ale potřeba hodně dat respektive zkušeností k tomu, se dostat na určitou úroveň, která už si poté dokáže rychleji poradit s novějšími případy. A zmíněných 800 000 sebrání předmětů je stále jen začátek, protože cvičení může pokračovat ještě dále.

Zajímavostí totiž je, že se systém sám naučil i specifické techniky uchycení podle druhu materiálu – třeba podle toho, jestli je měkký nebo tvrdý. Ukazuje to na budoucí možnosti, které podobné systémy založené na umělých neuronových sítích budou schopné „vymyslet“ i v rámci složitějších úloh.

Podrobné informace k výzkumu naleznete v oficiálnímu materiálu (PDF).

Diskuze (17) Další článek: Mýty v IT: Open source nikdo nepoužívá

Témata článku: Google, Technologie, Umělá inteligence, Roboti, Neuronová síť, Cvičení, Feedback, Různé materiály, Správný směr, Nový objekt, Umělý neuron, Paže, Regál, Amazon Video, Scala, Budoucí možnost, Člověk, Robotika, Hlavní odlišnost, Robotický prst, Abus kancelářské potřeby, Věc, Sergey, Odlišné nastavení, Success


Určitě si přečtěte

Šéf amerického Red Hatu: Odpojte Brno od internetu a zhroutíme se

Šéf amerického Red Hatu: Odpojte Brno od internetu a zhroutíme se

** V Česku najdete hromadu skvělých vývojářů ** Mnozí z nich přispívají do open-source ** Třeba v brněnském Red Hatu

Jakub Čížek | 51

Nechcete platit za Total Commander? Těmito bezplatnými programy ho můžete nahradit

Nechcete platit za Total Commander? Těmito bezplatnými programy ho můžete nahradit

** Total Commander je na Windows takřka legendou ** Licence však stojí více než tisíc korun ** Našli jsme pro vás deset alternativ dostupných zdarma

Karel Kilián | 125

Šmírovačka kamerami Googlu: Koukněte se, co nového zachytily na Street View

Šmírovačka kamerami Googlu: Koukněte se, co nového zachytily na Street View

Google stále fotí celý svět do své služby Street View. A novodobou zábavou je hledat v mapách Googlu vtipné záběry. Podívejte se na výběr nejlepších!

redakce | 42

Blíží se Juno. Jeden z nejhezčích Linuxů pro normální lidi

Blíží se Juno. Jeden z nejhezčích Linuxů pro normální lidi

** Ubuntu a Fedora patří k nejpopulárnějším linuxovým OS pro desktop ** A pak je tu zástup dalších nebo jejich odvozenin ** Jedním z nich je Elementary OS, který se brzy dočká novinek

Jakub Čížek | 71

Rekordy počasí: V Česku to ještě jde, skutečné extrémy zažívají jinde

Rekordy počasí: V Česku to ještě jde, skutečné extrémy zažívají jinde

** Teplotní extrémy dokážou překvapit. Seznamte se s rekordy v Česku i ve světě ** Rekordní hodnoty jsou mnohdy až k neuvěření ** Zjistěte, kdy ke bylo největší horko, zima, déšť či vítr

Karel Kilián | 7


Aktuální číslo časopisu Computer

Kdy necháme řídit chytrá auta?

6 Wi-Fi Mesh systémů ve velkém testu

Srovnali jsme 7 sportovních kamer

Znáte pravidla pro létání s drony?