Adapteva Epiphany: procesor až s 4 096 jádry

Na trhu jsou vícejádrové procesory, do serverové oblasti se chystají i 100jádrové čipy. Výkonný čip Epiphany ale přináší až 4 096 jader a výkon 5,6 TFLOPS.

Počty jader v klasickém procesoru stále stoupají, i přes to ale nestačí v paralelním výkonu konkurovat specializovaným grafickým čipům, které se stávají univerzálnějšími a zvládnou i obecné výpočty.

Zpracování velkého množství dat je stále nutnější, s příchodem obřích datacenter se rychlost i s obrovským objemem dat stala potřebnou, jako nikdy dříve. Minulý rok jsme vás informovali o hardwarovém startupu Tilera, který již chystá 100jádrový čip, který je určen právě pro cloud computing.

I přes to, že se jedná o tolik jader, celková spotřeba čipu je v rámci desítek wattů. Každé jádro tak samozřejmě není tak výkonné, jako u klasických procesorů, ale dalo by se spíše přirovnat k stream a CUDA procesorům v grafických čipech.

A právě do oblasti výkonných paralelních čipů se pustila i společnost Adapteva, která má v plánu vyrobit i čip obsahující neuvěřitelných 4 096 jader. Takový počet samostatných jader nemají ani nejnovější grafické čipy, které jsou zatím na hodnotě 2 048 na jednom kusu křemíku.

Adapteva a sen o tisíci jádrech

Společnost Adapteva byla založena teprve v roce 2008 s jasným cílem. Vyvinout čip na jednom kusu křemíku, který by poskytoval minimálně desetinásobně vyšší výkon, než současné čipy. Masivní paralelní architektura se prvního vyrobeného prototypu dočkala již v roce 2009, kdy byl pomocí 65nm technologie vyroben první 16jádrový model.

Klepněte pro větší obrázek 
Architektura Epiphany proti současným řešením čipů

Již od začátku ale chtěla Adapteva vyrobit čip, který bude mít tisíc jader, což se jí zatím pouze v rámci návrhu splnilo, ale již má připravenou architekturu, kterou lze škálovat až na neuvěřitelných 4 096 jader.

Epiphany: 4 096 a výkon až 5,6 TFLOPS

Superskalární RISC architektura Epiphany je zaměřena na budoucí použití, a to nejen v oblasti úsporných serverů, ale také v řadě dalších zařízení, jako například mobilní chytré počítače, tablety, radary, sonary a možnosti použití zahrnují i superpočítače, zpracování videa, rozpoznávání hlasu, snímání obrazu a další technologie, které lze nalézt například u robotů a inteligentních systémů.

Klepněte pro větší obrázek 
Obrovský počet malých jader a vysoký paralelní výkon

Celý čip je tvořen až 4 096 jádry spojených do komunikační sítě s vysokou propustností, včetně společné přístupu k paměti. Programování pro Epiphany čipy je možné pomocí ANSI-C a podporují všechny formáty IEEE pro aritmetiku v pohyblivé řádové řádce, na kterou jsou zaměřeny.

Adapteva slibuje vysokou efektivitu (spotřeba/výkon), snadný a rychlý vývoj aplikací, škálovatelnost i flexibilitu. V případě 16jádrového modelu s frekvencí 1 GHz nabízí výkon 32 GFLOPS (efektivita 35 GFLOPS/W) při 65nm výrobním procesu. S 28nm výrobou se u stejného 16jádrového čipu dočkáme sice nižšího výkonu 22 GFLOPS, efektivita však stoupne na 70 GFLOPS/W.

Klepněte pro větší obrázek 
Srovnání modelů čipů s architekturou Epiphany

V případě „simulace“ 1024jádrové čipu vyrobeného 28nm technologií a běžícího na frekvenci 700 MHz je špičkový výkon až 1,4 TFLOPS.

Klepněte pro větší obrázek
16jádrový čip Epiphany vs. 4jádrový ARM Cortex-A9

U 4096jádrového čipu lze dosáhnout výkonu až 5,6 TFLOPS při rozměrech čipu 524,3 mm2 a spotřebou 80 W.

Více výkonu, méně wattů

Adapteva není ale jediná společnost, která se snaží prorazit v oblasti vysokého paralelního výkonu s nízkou spotřebou a vysokou efektivitou. Mezi konkurenty patří například zmíněná Tilera, ale svým způsobem nesmíme zapomenout například na Imagination Technologies a jejich GPGPU čipy PowerVR, které v šesté generaci představí možná ještě lepší parametry, byť nejsou specializované pouze pro univerzální výpočty s plovoucí řádovou čárkou.

S koncem tohoto desetiletí bychom se měli dočkat superpočítačů s výkonem v řádu EXAFLOPS, což bude s přijatelnou spotřebou znamenat nutnost vysoké efektivity, tedy výkonu za jeden watt. A pokud vše půjde dobře, možná o Adapteva a architektuře Epiphany ještě uslyšíme. Ať už samostatně, nebo v rámci případné kombinace s dalšími čipy či pohlcením větší společností a implementací do větších systémů a univerzálnější architektury.

Témata článku: Hardware, Technologie, Procesory, Sonar, Watt, Vysoký výkon, Obří zařízení, Budoucí superpočítač, Jádro, Jediný prototyp, Specializovaný čip, Současný prototyp, Vysoká spotřeba, Klasický cloud, Proces

2 komentáře

Nejnovější komentáře

  • Tejvl 22. 3. 2012 20:40:27
    Cele integrovane obvody zacinaji byt ekvivalentem neceho, co byl drive...
Určitě si přečtěte

Jak se dostat do Windows, když neznáte heslo nebo nejste administrátor

Jak se dostat do Windows, když neznáte heslo nebo nejste administrátor

** S instalačním diskem Windows a znalostí pár příkazů odemknete téměř každý počítač s Windows. ** Poradíme i jak se tomu bránit

24.  7.  2017 | Tomáš Holčík | 37

Nový solární článek dokáže zachytit téměř veškerou energii světelného spektra ze Slunce

Nový solární článek dokáže zachytit téměř veškerou energii světelného spektra ze Slunce

** Vědci vytvořili nový typ solárního článku, který se pyšní neuvěřitelnou efektivitou ** Speciální trojrozměrná struktura dokáže zachytit téměř všechny vlnové délky světla ze Slunce ** Systém solárního článku využívá koncentrátorových čoček pro světlo

22.  7.  2017 | Karel Javůrek | 20

Další důkaz o existenci Planety 9

Další důkaz o existenci Planety 9

21.  7.  2017 | Jiří Černý | 5

Prolomí tanec tří mrtvých hvězd teorii relativity?

Prolomí tanec tří mrtvých hvězd teorii relativity?

** Einsteinova obecná teorie relativity je jedním z hlavních pilířů dnešní fyziky ** To ale vědcům nebrání, aby se ji neustále nepokoušeli sesadit z trůnu ** Tentokrát k jejímu testování využili systém pulzaru PSR J0337+1715

Včera | Stanislav Mihulka

Konec kabelové změti na stole i za ním. Tyhle doplňky vám ji pomohou zkrotit

Konec kabelové změti na stole i za ním. Tyhle doplňky vám ji pomohou zkrotit

** Vybrali jsme doplňky pro organizaci kabelů či nabíječek ** Často používané kabely lze zavěsit na magnetický držák ** Pro opletení kabelů se bude hodit husí krk i textilní rukávy

25.  7.  2017 | Stanislav Janů | 23


Aktuální číslo časopisu Computer

Test 11 telefonů do 6 000 Kč

Postavte si a přetaktujte počítač

Srovnali jsme 7 sportovních kamer

Která zaměstnání nahradí roboti?