
General Purpose Computation on Graphics
Processors (GPGPU)

Mike Houston, Stanford University

2Mike Houston - Stanford University Graphics Lab

A little about me

http://graphics.stanford.edu/~mhouston
Education:
– UC San Diego, Computer Science BS
– Stanford University, Computer Science MS
– Currently a PhD candidate at Stanford University

Research
– Parallel Rendering
– High performance computing

• Sequoia
– Computation on graphics processors (GPGPU)

• Brook, Folding@Home (GPU)

3Mike Houston - Stanford University Graphics Lab

The world changed over the last year…

Multiple GPGPU initiatives
– Vendors without GPGPU talking

about it

A few big apps:
– Game physics
– Folding@Home
– Video processing
– Finance modeling
– Biomedical
– Real-time image processing

Courses
– UIUC – ECE 498
– Supercomputing 2006
– SIGGRAPH 2006/2007

Lots of academic research

Actual GPGPU companies
– PeakStream
– RapidMind
– Accelware
– …

4Mike Houston - Stanford University Graphics Lab

What can you do on GPUs other than graphics?

Large matrix/vector operations (BLAS)
Protein Folding (Molecular Dynamics)
Finance modeling
FFT (SETI, signal processing)
Ray Tracing
Physics Simulation [cloth, fluid, collision,…]
Sequence Matching (Hidden Markov Models)
Speech/Image Recognition (Hidden Markov Models, Neural nets)
Databases
Sort/Search
Medical Imaging (image segmentation, processing)
And many, many, many more…

http://www.gpgpu.org

5Mike Houston - Stanford University Graphics Lab

Why use GPUs?

Commodity off the shelf (COTS)
– In every machine

Performance
– Intel Core2 Duo

• 48 GFLOPS peak
• 10 GB/s to main memory

– AMD HD2900XT
• 475 GFLOPS peak
• 100 GB/s to video memory

Lots of Perf/Watt and Perf/$

6Mike Houston - Stanford University Graphics Lab

Rolling your own GPGPU apps

Lots of information on GPGPU.org
Use graphics APIs (old way)
High level languages and systems to make GPGPU easier
– PeakStream
– RapidMind
– Brook
– CUDA

Mid-level
– CTM (CAL)

Low-level
– Full control over hardware – CTM (HAL)

7Mike Houston - Stanford University Graphics Lab

GPGPU/Streaming Languages

Why do you want them?
– Make programming GPUs easier!

• Don’t need to know OpenGL,
DirectX, or ATI/NV extensions

• Simplify common operations
• Focus on the algorithm, not on

the implementation

PeakStream
http://www.peakstreaminc.com

RapidMind
Commercial follow-on to Sh
http://www.rapidmind.net

Accelerator
– Microsoft Research
http://research.microsoft.com/downloads

Brook
– Stanford University

http://brook.sourceforge.net

CUDA
– NVIDIA

CTM
– AMD

8Mike Houston - Stanford University Graphics Lab

BrookGPU

History
– Developed at Stanford University
– Goal: allow non-graphics users to use GPUs for computation
– Lots of GPGPU apps written in Brook

Design
– C based language with streaming extensions
– Compiles kernels to DX9, OpenGL, CTM
– Runtimes (DX9/OpenGL/CTM) handle GPU interaction

Used for Folding@Home GPU code
– Large, real application

9Mike Houston - Stanford University Graphics Lab

Streams

Collection of records requiring similar computation
– particle positions, voxels, FEM cell, …

Ray r<200>;
float3 velocityfield<100,100,100>;

Similar to arrays, but…
– index operations disallowed: position[i]
– read/write stream operators

streamRead (r, r_ptr);
streamWrite (velocityfield, v_ptr);

10Mike Houston - Stanford University Graphics Lab

Kernels

Functions applied to streams
– similar to for_all construct
– no dependencies between stream elements

kernel void foo (float a<>, float b<>,
out float result<>) {

result = a + b;
}

float a<100>;
float b<100>;
float c<100>;

foo(a,b,c);
for (i=0; i<100; i++)

c[i] = a[i]+b[i];

11Mike Houston - Stanford University Graphics Lab

Kernels

Kernel arguments
– input/output streams

kernel void foo (float a<>,
float b<>,
out float result<>) {

result = a + b;
}

12Mike Houston - Stanford University Graphics Lab

Kernels

Kernel arguments
– input/output streams
– gather streams

kernel void foo (..., float array[]) {
a = array[i];

}

13Mike Houston - Stanford University Graphics Lab

Kernels

Kernel arguments
– input/output streams
– gather streams
– constant parameters

kernel void foo (..., float c) {
a = c + b;

}

14Mike Houston - Stanford University Graphics Lab

Brook for GPUs

Open source - Sourceforge
– CVS tree *much* more up to date (includes CTM support)

Project Page
– http://graphics.stanford.edu/projects/brook

Source
– http://www.sourceforge.net/projects/brook

Paper:
Brook for GPUs: Stream Computing on Graphics Hardware

Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Houston, Pat
Hanrahan

Fly-fishing fly images from The English Fly Fishing Shop

15Mike Houston - Stanford University Graphics Lab

PeakStream

http://www.peakstreaminc.com
C/C++ library based
Extended operators
– Array constructs

Just-in-time compilation/optimization
– Really amazing vectorization and scheduling

Fairly easy switch for Fortan/Matlab users
GPUs and multi-core

16Mike Houston - Stanford University Graphics Lab

RapidMind

http://www.rapidmind.net/
Embedded within Standard C++
– No new tools, compilers, preprocessors, etc.

Portable core
– Exposes platform specific functionality to also allow tuning for specific

platforms

Integrates with existing programming models
– Wrap your compute heavy code in extensions
– Leave rest of the code alone

GPUs, multi-core, Cell

17Mike Houston - Stanford University Graphics Lab

CUDA - NVIDIA

C with extensions/limitations
Similar to Brook, but better matched
to G80 hardware
Complete toolchain
– Compiler/profiler/debugger

Standard provided libraries
– BLAS, FFT

Support for G80+
Programmer’s guide and lots of
hardware information available

Exposed hardware traits
– Shared memory
– Multiple memory levels
– Register limits

Data-parallel + multi-threading
– Exposes the steaming model as

data-parallel at the top
– Exposes multi-threading at the

bottom
• Threads/Warps/Blocks

18Mike Houston - Stanford University Graphics Lab

AMD CTM

HAL – low level
– Streaming processor ISA
– Command buffer control
– Full memory layout

• Tiling
• Addressing

– Full processor scheduling

Basically a low level driver interface

CAL – mid level
– Stream processor compilers

• HLSL/PS3/PS4
– Command buffer assistance
– Memory management

• Allocation
• Layout

– Multi-GPU handling

Similar to DX/GL GPGPU
programming but semantics to
match computation and without the
overheads of graphics APIs

19Mike Houston - Stanford University Graphics Lab

AMD + Stream Processing Future

Brook
– AMD actively supporting CTM Brook backend for R5XX/R6XX

CTM – CAL is open platform
– http://sourceforge.net/projects/amdctm
– Sits atop HAL for each target

Streaming extensions to current programming languages
– Brook-like at first, then expanding

Multiple platforms
– GPUs and multi-core with same abstraction through CAL

Support multiple abstraction levels
– High-level – Brook support and streaming extensions to standard languages
– Mid-level (CAL) – memory management, command buffers, etc
– Low-level (HAL) – direct access to hardware, including ISA

20Mike Houston - Stanford University Graphics Lab

Sequoia – Programming the memory system

Hierarchical stream programming
– Similar to multi-level Brook
– Performance is about programming the memory system

• Compute is “free”
• Fast application have data locality at all levels

We can run on “difficult” systems
– Cell/PS3
– Clusters
– Multi-core/SMP
– Cluster of Cells in SMP

http://sequoia.stanford.edu

21Mike Houston - Stanford University Graphics Lab

GPGPU and the HD 2900XT

22Mike Houston - Stanford University Graphics Lab

GPGPU on the HD 2900XT

32-bit floating point
– Tighter IEEE conformance

compared to last generation
– ½ ULP on MUL/ADD,

1 ULP on MAD
– Denorm/underflow treated as 0
– No exception support

Integer support
– Much more natural stream

addressing
Scalar floating-point engines
– 320 of them

Long programs
– No instruction limits (up to

available memory)

Branching and Looping
– Low overhead branching and

looping
– Fine branch granularity:

~64 fragments

23Mike Houston - Stanford University Graphics Lab

GPGPU on the HD 2900XT, cont.

Advanced memory controller
– Latency hiding for streaming

reads and writes to memory
• With enough math ops you

can hide all memory
access!

– Large bandwidth
improvement over previous
generation

• Fetch4 performance
without the pain

Large memory addressing
– 40-bit address space

Faster upload/download
– DMA engine

24Mike Houston - Stanford University Graphics Lab

GPGPU on the HD 2900XT, cont.

Read/Write cache
– 8KB of on-chip storage
– Spill to memory
– Lots of interesting uses

• Reduction buffer
• Unlimited writes
• Register spill
• …

Flexibility
– Unlimited texture reads
– Scalar engines
– Lots of latency hiding
– Heavy register usage

without penalty
• Fewer threads in flight,

but you should have
more math

25Mike Houston - Stanford University Graphics Lab

Performance basics for GPGPU – HD 2900XT

Compute (DX/CTM)
– 470 GFLOPS (MAD – observed)

• No games, just a giant MAD
kernel

Offload to GPU (DX)
– Readback (GPU CPU):

1.4 GB/s
– Download (CPU GPU):

2.4GB/s
Branch granularity (DX/CTM)
– ~64 threads

Memory (CTM)
– 180 GB/s cache bandwidth
– 60 GB/s streaming bandwidth
– 8 GB/s random access
– 1 cycle latency for a float4 fetch

(cache hit)
4 cycle latency for a float4 fetch
(streaming)
1 cycle = 5 four-way MADs

26Mike Houston - Stanford University Graphics Lab

Folding@Home

27Mike Houston - Stanford University Graphics Lab

What is protein folding

unfolded
Native (folded)

Protein folding: a
fundamental
biophysical problem

What are proteins and why do they “fold”?
– Proteins are molecules in the body which carries out many important functions, such as

enzymes and antibodies
– Before proteins can carryout their function, they must first assemble themselves or

“fold”

Potential impact
– Design of novel proteins & protein-like heteropolymers
– Understanding protein misfolding related diseases

Courtesy Vijay Pande

28Mike Houston - Stanford University Graphics Lab

Protein folding in the cell

ribosome
unfolded

Native (folded)

misfolded oligomers

fibrils/amyloid

SYNTHESIS SELF-ASSEMBLY FINAL PRODUCTS

chaperone

Our goals:
(1) To develop new means to
characterize these fundamental
biophysical processes

(2) To apply this understanding
to challenging biological &
biomedical problems

Courtesy Vijay Pande

29Mike Houston - Stanford University Graphics Lab

Molecular nature of Alzheimer’s Disease
Molecular nature
– Brain tissue contains deposits of

beta-Amyloid peptide (Aβ)
– amphipathic 39-42 residue fragment

of a membrane protein cleaved by
secretases

– Aggregate first into oligomers, then
fibrils

Intrinsically unstructured protein
– Important new class of proteins
– Common issue in many protein

misfolding related diseases
– Very different paradigm for structural

study

Courtesy Vijay Pande

30Mike Houston - Stanford University Graphics Lab

Biomolecules obey the laws of physics
– Use physical chemistry theory and simulation techniques to study

biomolecules
– All atom model with physical interactions

Physics-based model: Molecular Dynamics
– Numerically integrate Newton’s equations
– Choose δt to match timescale (δt ~10 -15 sec)
– Classical model, with parameters to match experiment and/or quantum

mechanics calculation

Comparison to informatic approaches
– Not limited by protein experiment: examine structures not in PDB (eg

aggregates)
– Possibility to include non-protein molecules (eg small molecules)
– BUT, very, very computationally demanding
–

The 25+ year old dream: use the laws of physics to study biomolecules

bond stretching

angle bending

electrostatics

van der Waals

+ -

Courtesy Vijay Pande

31Mike Houston - Stanford University Graphics Lab

The 25 year old nightmare- The challenge of long timescales

10-15

femto
10-12

pico
10-9

nano
10-6

micro
10-3

milli
100

seconds
long

MD run
where we
need to be

Bond
vibration

Isomer-
ation

Water
dynamics

Helix
forms

Fast
conf change

MD
step

where we’d
love to be

Fundamental problem for simulation
– Proteins fold in micro- to milliseconds
– Computers can simulate nanoseconds
– How can we break this impasse?

Courtesy Vijay Pande

Slow
conf change

32Mike Houston - Stanford University Graphics Lab

Natural idea: Use multiple processors

Natural first idea: use multiple CPU’s
– Typical calculation needed requires

1,000,000 days on 1 fast processor
– How about running on 100,000 CPU’s?
– “Linear scaling” would suggest this would

take just 10 days with 100,000 CPU’s

Life isn’t that easy
– Most codes can’t scale this way
– In 2000, we suggested a method to solve

this problem
– Newest version (2005), allows for a very

efficient use of 100K CPU’s

Can 2000 grad students complete a PhD’s
worth of research in 1 day?

Most likely not! One must design novel
ways to utilize large scale resources in
efficient ways.

Courtesy Vijay Pande

33Mike Houston - Stanford University Graphics Lab

Folding@Home: Computational resources from the future, realized today

Very powerful computational resource
– ~700 Teraflops sustained performance
– >2,000,000 total processors; ~250,000 active

Big impact
– Break the micro- to

millisecond barrier
– What used to take 1M days,

now takes a week or two
– Enables key research

previously impossible
– These new methods are

also starting to be used
by other groups for folding study >250,000 active CPUs over the world

(CPU locations from IP address)Courtesy Vijay Pande

34Mike Houston - Stanford University Graphics Lab

How does this all work?

Courtesy Vijay Pande

35Mike Houston - Stanford University Graphics Lab

Folding@Home

~100,000 CPUs
over the world
(CPU locations
from IP address)

Earth@Night

Electricity as
distributed in the
world (from
NASA satellite
data)

Who’s Folding?

Courtesy Vijay Pande

http://antwrp.gsfc.nasa.gov/apod/image/0011/earthlights2_dmsp_big.jpg

36Mike Houston - Stanford University Graphics Lab

Folding@Home communities – small subset

37Mike Houston - Stanford University Graphics Lab

Where we want to be

F@H
~2003-06

Next steps: new challenges

What we can do
– Somewhat long timescales

(microseconds to milliseconds)
– Somewhat large peptides &

proteins (30-50 residues)
– Allows us to directly test the

relevant chemical detail in these
biophysical problems

Where we want to be
– Longer timescales (seconds?)
– Larger systems (~100 residues)
– Yet not sacrificing details

Size (amino acids)

Fo
ld

in
g

tim
e

(s
ec

on
ds

)

100

10-3

10-6

10-9

0 20 40 60 80 100

Without
FAH

Courtesy Vijay Pande

38Mike Houston - Stanford University Graphics Lab

Streaming processors on FAH

New processors
– Originally special purpose (eg for graphics, games)
– High flops: ~500GFLOPS peak programmable, 32-bit FLOPs

Utilize for scientific computing
– We have ported our MD code to GPUs & Cell (PS3)
– Partnership with Sony and AMD
– 20x to 40x speed increase

Impact on calculations
– Critical for MSM’s: longer trajectories,

not just more of them
– Tackle more complex systems

Courtesy Vijay Pande

39Mike Houston - Stanford University Graphics Lab

Projected:
F@H 2007-2008

Folding@Home’s next steps

New methods
– New processors and new advances

in implicit solvation models allow
for a ~20x to 500x speedup

– Achieve simulations on the second
timescale

Impact: sampling may soon
not be a problem
– “@Home” not needed to simulate

sub-millisecond timescale
– More complex problems would be in

reach with distributed computing
– Turn our attention to further improving

models (experiment key for these
next steps)

Size (amino acids)

Fo
ld

in
g

tim
e

(s
ec

on
ds

)

100

10-3

10-6

10-9

0 20 40 60 80 100

With these new capabilities, we would
be able to simulate the folding of a
significant fraction of protein domains

Without
FAH

F@H
~2003-06

Courtesy Vijay Pande

40Mike Houston - Stanford University Graphics Lab

GPUs, SMPs, PS3s (oh my!)

Performance
– GPU > PS3 > SMP > Single-core

Flexibility
– Single-core > SMP > PS3 > GPU

GPUs are really fast
– 20-40x a single core P4

But they can only run a subset of the research
– Implicit water models

Points are awarded with this in consideration

41Mike Houston - Stanford University Graphics Lab

Current status – April 20, 2007

http://fah-web.stanford.edu/cgi-bin/main.py?qtype=osstats

Client type Current TFLOPS* Active Processors

Windows 177 185870

Mac OS X/PPC 8 10394

Mac OS X/Intel 14 4600

Linux 47 27373

GPU 56 947

Playstation3 409 31217

Total 711 260401

*TFLOPS is actual flops from software cores, not peak values

42Mike Houston - Stanford University Graphics Lab

For More Information

Main site
– http://folding.stanford.edu

GPU information
– http://folding.stanford.edu/FAQ-ATI.html

Petaflop Initiative
– Stream processors

• GPUs
• PS3 (Cell)

– http://folding.stanford.edu/FAQ-FPI.html

43Mike Houston - Stanford University Graphics Lab

Folding on HD 2900XT

Support will ship with next release
Force calculation 2.2X(!) faster than R580
Overall application ~45% faster
– Amdahl’s law strikes again

• Supporting kernels unoptimized
• CPU overhead

– Little tuning time so far on R6XX

We can now explore more complex algorithms
– Larger register requirements
– Integer support – random number generation
– More bandwidth

44Mike Houston - Stanford University Graphics Lab

Future Folding@Home GPGPU

Improvements
– Lower CPU overhead

• Brook DX9 backend + core changes
– CTM through Brook

• Lower overhead/finer tuning
• Linux support much easier
• Better stability – users can upgrade drivers for games without breaking anything

– More GPUs supported
New cores
– Back-port some of what we learned from Cell ports
– Several new models
– Many more work units
– Revisit other models running well on SMP/Cell

45Mike Houston - Stanford University Graphics Lab

Acknowledgements – Folding@Home research group
Current members:
Adam Beberg
Relly Brandman
Kim Branson
Jeremy England
Dan Ensign
Guha Jayachandran
Rajdas Jaykumar
Peter Kasson
Nick Kelley
Del Lucent
Edgar Luttmann
Sanghyun Park
Paula Petrone
Alex Robertson
Nina Singhal
Eric Sorin
Vishal Vaidyananthan

Former members:
Ian Baker
Jim Caldwell
Lillian Chong
Sidney Elmer
Mark Engelhardt
Amit Garg
Siraj Khaliq
Stefan Larson
Sung Joo Lee
Bradley Nakatani
Young Min Rhee
Michael Shirts
Chris Snow
Abhay Sukumaran
Bojan Zagrovic

Coauthors (collaborators):
Steve Boxer (Stanford)
Axel Brunger (Stanford)
John Desjarlais (Xencor)
Seb Doniach (Stanford)
Hide Fujutani (Fujitsu)
Feng Gai (U. Penn.)
Martin Gruelebe (UIUC)
Leo Guibas (Stanford)
Steve Hagen (U. Florida)
Dan Herschlag (Stanford)
Pat Hanrahan (Stanford)
Teri Klein (Stanford)
Ron Kopito (Stanford)
Grant Krafft (Acumen)
Erik Lindahl (Stockholm)
Jed Pitera (IBM)
Kevin Plaxco (UCSB)
Guillermo Sapiro (U. Minn.)
Tobin Sosnick (U. Chicago)
Bill Swope (IBM)

Funding: Folding@Home donors, NSF, NIH, Dreyfus, ACS
PRF, Acumen Pharmaceuticals, Intel, Google, Apple, Terman

46Mike Houston - Stanford University Graphics Lab

Making GPGPU easier

47Mike Houston - Stanford University Graphics Lab

What GPGPU needs from vendors – what we got

More information
– Shader ISA
– Latency information
– GPGPU Programming guide (floating point)

Direct access to the hardware/Compute APIs
Fast transfer to and from GPU
– Non-blocking

Consistent graphics drivers
– Some optimizations for games hurt GPGPU performance

48Mike Houston - Stanford University Graphics Lab

What GPGPU needs from vendors

More information
– Latency information
– Memory system information

Fast transfer to and from GPU
– Non-blocking
– DMA driven

Consistent drivers
– Stable drivers for games AND computation

High-level and low-level access
– High-level: get more people using GPUs, make it easy to approach
– Low-level: let us tune to our heart’s content!

• Remove shader compiler and game optimizations from breaking our code

More software companies
– PeakStream and RapidMind a good start

49Mike Houston - Stanford University Graphics Lab

What GPGPU needs from the community

Data Parallel programming languages
– Need more exploration

“GCC” for GPUs/streaming processors
– We almost have enough information for this

Parallel data structures
– Still really hard…

More applications
– What will make the average user care about GPGPU?

• Folding@Home! ;-)
– What else can we make data parallel and run fast?

50Mike Houston - Stanford University Graphics Lab

Questions?

I’ll also be around after the talk
Email: mhouston@stanford.edu
Web: http://graphics.stanford.edu/~mhouston

For lots of great GPGPU information:
– GPGPU.org (http://www.gpgpu.org)

	General Purpose Computation on Graphics Processors (GPGPU)
	A little about me
	The world changed over the last year…
	What can you do on GPUs other than graphics?
	Why use GPUs?
	Rolling your own GPGPU apps
	GPGPU/Streaming Languages
	BrookGPU
	Streams
	Kernels
	Kernels
	Kernels
	Kernels
	Brook for GPUs
	PeakStream
	RapidMind
	CUDA - NVIDIA
	AMD CTM
	AMD + Stream Processing Future
	Sequoia – Programming the memory system
	GPGPU on the HD 2900XT
	GPGPU on the HD 2900XT, cont.
	GPGPU on the HD 2900XT, cont.
	Performance basics for GPGPU – HD 2900XT
	What is protein folding
	Protein folding in the cell
	Molecular nature of Alzheimer’s Disease
	The 25+ year old dream: use the laws of physics to study biomolecules
	The 25 year old nightmare- The challenge of long timescales
	Natural idea: Use multiple processors
	Folding@Home: Computational resources from the future, realized today
	How does this all work?
	Who’s Folding?
	Folding@Home communities – small subset
	Next steps: new challenges
	Streaming processors on FAH
	Folding@Home’s next steps
	GPUs, SMPs, PS3s (oh my!)
	Current status – April 20, 2007
	For More Information
	Folding on HD 2900XT
	Future Folding@Home GPGPU
	Acknowledgements – Folding@Home research group
	What GPGPU needs from vendors – what we got
	What GPGPU needs from vendors
	What GPGPU needs from the community
	Questions?

