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A little about me

http://graphics.stanford.edu/~mhouston
Education:
– UC San Diego, Computer Science BS
– Stanford University, Computer Science MS
– Currently a PhD candidate at Stanford University

Research
– Parallel Rendering
– High performance computing

• Sequoia
– Computation on graphics processors (GPGPU)

• Brook, Folding@Home (GPU)
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The world changed over the last year…

Multiple GPGPU initiatives
– Vendors without GPGPU talking 

about it

A few big apps:
– Game physics
– Folding@Home
– Video processing
– Finance modeling
– Biomedical
– Real-time image processing

Courses
– UIUC – ECE 498
– Supercomputing 2006
– SIGGRAPH 2006/2007

Lots of academic research

Actual GPGPU companies
– PeakStream
– RapidMind
– Accelware
– …
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What can you do on GPUs other than graphics?

Large matrix/vector operations (BLAS)
Protein Folding (Molecular Dynamics)
Finance modeling
FFT (SETI, signal processing)
Ray Tracing
Physics Simulation [cloth, fluid, collision,…]
Sequence Matching (Hidden Markov Models)
Speech/Image Recognition (Hidden Markov Models, Neural nets)
Databases
Sort/Search
Medical Imaging (image segmentation, processing)
And many, many, many more…

http://www.gpgpu.org
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Why use GPUs?

Commodity off the shelf (COTS)
– In every machine

Performance
– Intel Core2 Duo

• 48 GFLOPS peak 
• 10 GB/s to main memory

– AMD HD2900XT
• 475 GFLOPS peak 
• 100 GB/s to video memory

Lots of Perf/Watt and Perf/$
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Rolling your own GPGPU apps

Lots of information on GPGPU.org
Use graphics APIs (old way)
High level languages and systems to make GPGPU easier
– PeakStream
– RapidMind
– Brook 
– CUDA

Mid-level
– CTM (CAL)

Low-level
– Full control over hardware – CTM (HAL)
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GPGPU/Streaming Languages

Why do you want them?
– Make programming GPUs easier!

• Don’t need to know OpenGL, 
DirectX, or ATI/NV extensions

• Simplify common operations
• Focus on the algorithm, not on 

the implementation

PeakStream
http://www.peakstreaminc.com

RapidMind
Commercial follow-on to Sh
http://www.rapidmind.net

Accelerator
– Microsoft Research
http://research.microsoft.com/downloads

Brook
– Stanford University

http://brook.sourceforge.net

CUDA
– NVIDIA

CTM
– AMD
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BrookGPU

History
– Developed at Stanford University
– Goal: allow non-graphics users to use GPUs for computation
– Lots of GPGPU apps written in Brook

Design
– C based language with streaming extensions
– Compiles kernels to DX9, OpenGL, CTM
– Runtimes (DX9/OpenGL/CTM) handle GPU interaction

Used for Folding@Home GPU code
– Large, real application
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Streams

Collection of records requiring similar computation
– particle positions, voxels, FEM cell, …

Ray r<200>;
float3 velocityfield<100,100,100>;

Similar to arrays, but…
– index operations disallowed:       position[i]
– read/write stream operators

streamRead (r, r_ptr);
streamWrite (velocityfield, v_ptr);
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Kernels

Functions applied to streams
– similar to for_all construct
– no dependencies between stream elements

kernel void foo (float a<>, float b<>,
out float result<>) {

result = a + b;
}

float a<100>;
float b<100>;
float c<100>;

foo(a,b,c);
for (i=0; i<100; i++)

c[i] = a[i]+b[i];
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Kernels

Kernel arguments
– input/output streams

kernel void foo (float a<>,
float b<>,
out float result<>) {

result = a + b;
}
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Kernels

Kernel arguments
– input/output streams
– gather streams

kernel void foo (..., float array[] ) {
a = array[i];

}
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Kernels

Kernel arguments
– input/output streams
– gather streams
– constant parameters

kernel void foo (..., float c ) {
a = c + b; 

}
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Brook for GPUs

Open source - Sourceforge
– CVS tree *much* more up to date (includes CTM support)

Project Page
– http://graphics.stanford.edu/projects/brook

Source
– http://www.sourceforge.net/projects/brook

Paper:
Brook for GPUs: Stream Computing on Graphics Hardware

Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Houston, Pat 
Hanrahan

Fly-fishing fly images from The English Fly Fishing Shop
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PeakStream

http://www.peakstreaminc.com
C/C++ library based
Extended operators
– Array constructs

Just-in-time compilation/optimization
– Really amazing vectorization and scheduling

Fairly easy switch for Fortan/Matlab users
GPUs and multi-core
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RapidMind

http://www.rapidmind.net/
Embedded within Standard C++
– No new tools, compilers, preprocessors, etc.

Portable core
– Exposes platform specific functionality to also allow tuning for specific 

platforms

Integrates with existing programming models
– Wrap your compute heavy code in extensions
– Leave rest of the code alone

GPUs, multi-core, Cell
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CUDA - NVIDIA

C with extensions/limitations
Similar to Brook, but better matched 
to G80 hardware
Complete toolchain
– Compiler/profiler/debugger

Standard provided libraries
– BLAS, FFT

Support for G80+
Programmer’s guide and lots of 
hardware information available

Exposed hardware traits
– Shared memory
– Multiple memory levels
– Register limits

Data-parallel + multi-threading
– Exposes the steaming model as 

data-parallel at the top
– Exposes multi-threading at the 

bottom
• Threads/Warps/Blocks
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AMD CTM

HAL – low level
– Streaming processor ISA
– Command buffer control
– Full memory layout

• Tiling
• Addressing

– Full processor scheduling

Basically a low level driver interface

CAL – mid level
– Stream processor compilers

• HLSL/PS3/PS4
– Command buffer assistance
– Memory management

• Allocation
• Layout

– Multi-GPU handling

Similar to DX/GL GPGPU 
programming but semantics to 
match computation and without the 
overheads of graphics APIs
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AMD + Stream Processing Future

Brook
– AMD actively supporting CTM Brook backend for R5XX/R6XX

CTM – CAL is open platform
– http://sourceforge.net/projects/amdctm
– Sits atop HAL for each target

Streaming extensions to current programming languages
– Brook-like at first, then expanding

Multiple platforms
– GPUs and multi-core with same abstraction through CAL

Support multiple abstraction levels
– High-level – Brook support and streaming extensions to standard languages
– Mid-level (CAL) – memory management, command buffers, etc
– Low-level (HAL) – direct access to hardware, including ISA
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Sequoia – Programming the memory system

Hierarchical stream programming
– Similar to multi-level Brook
– Performance is about programming the memory system

• Compute is “free”
• Fast application have data locality at all levels

We can run on “difficult” systems
– Cell/PS3
– Clusters
– Multi-core/SMP
– Cluster of Cells in SMP

http://sequoia.stanford.edu
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GPGPU and the HD 2900XT
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GPGPU on the HD 2900XT

32-bit floating point
– Tighter IEEE conformance 

compared to last generation
– ½ ULP on MUL/ADD,

1  ULP on MAD
– Denorm/underflow treated as 0 
– No exception support

Integer support
– Much more natural stream 

addressing
Scalar floating-point engines
– 320 of them

Long programs
– No instruction limits (up to 

available memory)

Branching and Looping
– Low overhead branching and 

looping
– Fine branch granularity: 

~64 fragments
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GPGPU on the HD 2900XT, cont.

Advanced memory controller
– Latency hiding for streaming 

reads and writes to memory
• With enough math ops you 

can hide all memory 
access!

– Large bandwidth 
improvement over previous 
generation

• Fetch4 performance 
without the pain

Large memory addressing
– 40-bit address space

Faster upload/download
– DMA engine
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GPGPU on the HD 2900XT, cont.

Read/Write cache
– 8KB of on-chip storage
– Spill to memory
– Lots of interesting uses

• Reduction buffer
• Unlimited writes
• Register spill
• …

Flexibility
– Unlimited texture reads
– Scalar engines
– Lots of latency hiding
– Heavy register usage 

without penalty
• Fewer threads in flight, 

but you should have 
more math
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Performance basics for GPGPU – HD 2900XT

Compute (DX/CTM)
– 470 GFLOPS (MAD – observed)

• No games, just a giant MAD 
kernel

Offload to GPU (DX)
– Readback (GPU     CPU):  

1.4 GB/s 
– Download (CPU     GPU):  

2.4GB/s
Branch granularity (DX/CTM)
– ~64 threads

Memory (CTM)
– 180 GB/s cache bandwidth
– 60 GB/s streaming bandwidth
– 8 GB/s random access
– 1 cycle latency for a float4 fetch 

(cache hit)
4 cycle latency for a float4 fetch 
(streaming)
1 cycle = 5 four-way MADs
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Folding@Home
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What is protein folding

unfolded
Native (folded)

Protein folding: a 
fundamental 
biophysical problem

What are proteins and why do they “fold”?
– Proteins are molecules in the body which carries out many important functions, such as 

enzymes and antibodies
– Before proteins can carryout their function, they must first assemble themselves or 

“fold”

Potential impact
– Design of novel proteins & protein-like heteropolymers
– Understanding protein misfolding related diseases

Courtesy Vijay Pande
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Protein folding in the cell

ribosome
unfolded

Native (folded)

misfolded oligomers

fibrils/amyloid

SYNTHESIS SELF-ASSEMBLY FINAL PRODUCTS

chaperone

Our goals:
(1) To develop new means to 
characterize these fundamental 
biophysical processes 

(2) To apply this understanding 
to challenging biological & 
biomedical problems

Courtesy Vijay Pande
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Molecular nature of Alzheimer’s Disease
Molecular nature
– Brain tissue contains deposits of 

beta-Amyloid peptide (Aβ)
– amphipathic 39-42 residue fragment 

of a membrane protein cleaved by 
secretases

– Aggregate first into oligomers, then 
fibrils

Intrinsically unstructured protein
– Important new class of proteins
– Common issue in many protein 

misfolding related diseases
– Very different paradigm for structural 

study

Courtesy Vijay Pande
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Biomolecules obey the laws of physics
– Use physical chemistry theory and simulation techniques to study

biomolecules
– All atom model with physical interactions

Physics-based model: Molecular Dynamics 
– Numerically integrate Newton’s equations
– Choose δt to match timescale (δt ~10 -15 sec)
– Classical model, with parameters to match experiment and/or quantum 

mechanics calculation

Comparison to informatic approaches
– Not limited by protein experiment: examine structures not in PDB (eg 

aggregates)
– Possibility to include non-protein molecules (eg small molecules)
– BUT, very, very computationally demanding
–

The 25+ year old dream: use the laws of physics to study biomolecules

bond stretching

angle bending

electrostatics

van der Waals

+ -

Courtesy Vijay Pande
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The 25 year old nightmare- The challenge of long timescales

10-15

femto
10-12

pico
10-9

nano
10-6

micro
10-3

milli
100

seconds
long 

MD run
where we
need to be

Bond 
vibration

Isomer-
ation

Water
dynamics

Helix
forms

Fast
conf change

MD
step

where we’d
love to be

Fundamental problem for simulation
– Proteins fold in micro- to milliseconds
– Computers can simulate nanoseconds
– How can we break this impasse?

Courtesy Vijay Pande

Slow
conf change
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Natural idea: Use multiple processors

Natural first idea: use multiple CPU’s
– Typical calculation needed requires 

1,000,000 days on 1 fast processor
– How about running on 100,000 CPU’s?
– “Linear scaling” would suggest this would 

take just 10 days with 100,000 CPU’s

Life isn’t that easy
– Most codes can’t scale this way
– In 2000, we suggested a method to solve 

this problem
– Newest version (2005), allows for a very 

efficient use of 100K CPU’s

Can 2000 grad students complete a PhD’s 
worth of research in 1 day?

Most likely not!  One must design novel 
ways to utilize large scale resources in 
efficient ways.

Courtesy Vijay Pande
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Folding@Home:  Computational resources from the future, realized today

Very powerful computational resource
– ~700 Teraflops sustained performance
– >2,000,000 total processors; ~250,000 active 

Big impact
– Break the micro- to 

millisecond barrier
– What used to take 1M days, 

now takes a week or two
– Enables key research 

previously impossible
– These new methods are 

also starting to be used 
by other groups for folding study >250,000 active CPUs over the world 

(CPU locations from IP address)Courtesy Vijay Pande
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How does this all work?

Courtesy Vijay Pande
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Folding@Home

~100,000 CPUs 
over the world 
(CPU locations 
from IP address)

Earth@Night

Electricity as 
distributed in the 
world (from 
NASA satellite 
data)

Who’s Folding?

Courtesy Vijay Pande

http://antwrp.gsfc.nasa.gov/apod/image/0011/earthlights2_dmsp_big.jpg
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Folding@Home communities – small subset
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Where we want to be

F@H 
~2003-06

Next steps: new challenges

What we can do
– Somewhat long timescales 

(microseconds to milliseconds)
– Somewhat large peptides & 

proteins (30-50 residues)
– Allows us to directly test the 

relevant chemical detail in these 
biophysical problems

Where we want to be
– Longer timescales (seconds?)
– Larger systems (~100 residues)
– Yet not sacrificing details

Size (amino acids)
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FAH

Courtesy Vijay Pande
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Streaming processors on FAH

New processors 
– Originally special purpose (eg for graphics, games)
– High flops: ~500GFLOPS peak programmable, 32-bit FLOPs

Utilize for scientific computing
– We have ported our MD code to GPUs & Cell (PS3)
– Partnership with Sony and AMD
– 20x to 40x speed increase

Impact on calculations
– Critical for MSM’s: longer trajectories, 

not just more of them
– Tackle more complex systems

Courtesy Vijay Pande
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Projected: 
F@H 2007-2008

Folding@Home’s next steps

New methods
– New processors and new advances 

in implicit solvation models allow 
for a ~20x to 500x speedup

– Achieve simulations on the second 
timescale

Impact: sampling may soon 
not be a problem
– “@Home” not needed to simulate 

sub-millisecond timescale
– More complex problems would be in 

reach with distributed computing
– Turn our attention to further improving 

models (experiment key for these 
next steps)
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With these new capabilities, we would 
be able to simulate the folding of a 
significant fraction of protein domains

Without 
FAH

F@H 
~2003-06

Courtesy Vijay Pande
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GPUs, SMPs, PS3s (oh my!)

Performance
– GPU > PS3 > SMP > Single-core

Flexibility
– Single-core > SMP > PS3 > GPU

GPUs are really fast
– 20-40x a single core P4

But they can only run a subset of the research
– Implicit water models

Points are awarded with this in consideration
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Current status – April 20, 2007

http://fah-web.stanford.edu/cgi-bin/main.py?qtype=osstats

Client type Current TFLOPS* Active Processors

Windows 177 185870

Mac OS X/PPC 8 10394

Mac OS X/Intel 14 4600

Linux 47 27373

GPU 56 947

Playstation3 409 31217

Total 711 260401

*TFLOPS is actual flops from software cores, not peak values
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For More Information

Main site
– http://folding.stanford.edu

GPU information
– http://folding.stanford.edu/FAQ-ATI.html

Petaflop Initiative
– Stream processors

• GPUs
• PS3 (Cell)

– http://folding.stanford.edu/FAQ-FPI.html
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Folding on HD 2900XT

Support will ship with next release
Force calculation 2.2X(!) faster than R580
Overall application ~45% faster
– Amdahl’s law strikes again

• Supporting kernels unoptimized
• CPU overhead

– Little tuning time so far on R6XX

We can now explore more complex algorithms
– Larger register requirements
– Integer support – random number generation
– More bandwidth
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Future Folding@Home GPGPU

Improvements
– Lower CPU overhead

• Brook DX9 backend + core changes
– CTM through Brook

• Lower overhead/finer tuning
• Linux support much easier
• Better stability – users can upgrade drivers for games without breaking anything

– More GPUs supported
New cores
– Back-port some of what we learned from Cell ports
– Several new models
– Many more work units
– Revisit other models running well on SMP/Cell
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Making GPGPU easier
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What GPGPU needs from vendors – what we got

More information
– Shader ISA
– Latency information
– GPGPU Programming guide (floating point)

Direct access to the hardware/Compute APIs
Fast transfer to and from GPU
– Non-blocking

Consistent graphics drivers
– Some optimizations for games hurt GPGPU performance
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What GPGPU needs from vendors

More information
– Latency information
– Memory system information

Fast transfer to and from GPU
– Non-blocking
– DMA driven

Consistent drivers
– Stable drivers for games AND computation

High-level and low-level access
– High-level: get more people using GPUs, make it easy to approach
– Low-level: let us tune to our heart’s content!

• Remove shader compiler and game optimizations from breaking our code

More software companies
– PeakStream and RapidMind a good start
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What GPGPU needs from the community

Data Parallel programming languages
– Need more exploration

“GCC” for GPUs/streaming processors
– We almost have enough information for this

Parallel data structures
– Still really hard…

More applications
– What will make the average user care about GPGPU?

• Folding@Home! ;-)
– What else can we make data parallel and run fast?
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Questions?

I’ll also be around after the talk
Email: mhouston@stanford.edu
Web: http://graphics.stanford.edu/~mhouston

For lots of great GPGPU information:
– GPGPU.org (http://www.gpgpu.org)
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