Nový objev v oblasti základních prvků pro světelné čipy

Současné elektrické čipy v budoucnu nahradí optické čipy, které mohou být mnohem výkonnější a úspornější. Vědci vynalezli způsob, jak vyrábět i navrhovat další důležitou komponentu.

Pokud jde o světelné čipy, v posledních letech se objevilo spoustu nových objevů, které nás posouvají blíže k jejich realizaci. Stále se jedná především o výzkum základních prvků, ze kterých je takový optický čip složený. Stejně jako jsou současné elektronické čipy složené z hlavních komponent v podobě tranzistorů a elektricky vodivých spojů.

A právě na oblast spojování logických prvků uvnitř čipu se zaměřila inženýrka Jelena Vučkovičová, Alexander Y. Piggot a další vědci z výzkumného týmu.

Zahřívání a spotřeba elektronických čipů

Jedna z hlavních částí, která limituje současné elektrické čipy, je jistě spotřeba a zahřívání, které je způsobeno obrovským ztrátovým teplem. Tento efekt jistě zná každý z nás – při zatížení notebooku, tabletu nebo v dnešním případě i chytrého telefonu se zařízení často poměrně dost „rozpálí“.

Dle staršího výzkumu Davida Millera je spotřeba a zahřívání až z 80 % důsledkem samotných elektrických spojení uvnitř čipu a nikoli tranzistorů. To znamená, že přechod z použití elektronů pro přenos dat i uvnitř čipu by znamenal velký skok pro snížení spotřeby a teploty. I když lze očekávat, že by výrobci případný nový strop využili částečně i pro zvýšení rychlosti.

Fotonika je nyní poměrně v rozmachu, ale zatím jsme se posunuli z využívání fotonů na přenos na velké vzdálenosti k rychlému a efektivnímu spojení jednotlivých počítačů. To se hodí například u datacenter, serverů a podobně. Fotonické moduly jsou tak stále menší, efektivnější, rychlejší a hlavně levnější.

Miniaturizace technologie pro použití uvnitř čipů je ale ještě daleko, byť se velmi rychle blížíme k cíli. Přenos dat pomocí fotonů vyžaduje mnohem menší množství energie a dle současných měřítek lze přenášet až 20x více dat, než pomocí elektronů a vodiče.

Infračervené světlo a „děravá“ křemíková destička

Mezi použitelné vlastnosti křemíku patří to, že je pro infračervené světlo zcela průhledný, podobně jako průhledné sklo pro světlo ve viditelném spektru. Vědcům se podařilo vyvinout způsob, jak vyrábět opravdu miniaturní optické spoje, které lze teoreticky nasadit v počtech několika tisíců kusů přímo dovnitř čipu.

Klepněte pro větší obrázek
Pohled na strukturu optického spoje pod elektronovým mikroskopem

Současná výroba optických členů je pro takové nasazení neefektivní, protože moduly a karty obsahují maximálně jednotky takových optických spojů. Jak ale známe z historie, pokročilá miniaturizace je důvod, proč máme dnes i v jednom čipu miliardy tranzistorů.

Klepněte pro větší obrázekKlepněte pro větší obrázekKlepněte pro větší obrázek

Na první pohled malá křemíková destička o rozměrech 2,8 x 2,8 mikrometrů je schopná z jednoho příchozího světelného paprsku vytvořit dva odlišné s vlnovou délkou 1 300 nm a 1 550 nm. Ztráta signálu je přitom pouze -2 dB a přeslechy pouze  -11 dB.

Klepněte pro větší obrázek
Detail vytvořených paprsků s různou vlnovou délkou

Jedná se tak o nejmenší demultiplexor pro vlnovou délku světla. Nutno navíc podotknout, že tento prvek byl vyroben pomocí „staré“ výrobní technologie, tu nejpokročilejší mají samozřejmě společnosti jako Intel, Samsung, TSMC a další. O to víc je nové řešení zajímavější, protože nezahrnuje specializované stroje či podmínky, které ještě nejsou v hromadné výrobě – právě naopak.

Automatické navrhování dle potřeby

Týmu se podařilo vytvořit i algoritmus, který řeší další problém při nasazení těchto spojů ve větších počtech – návrh struktury. Otočili postup designování tak, že stačí zadat jak chcete, aby světlo bylo zakřivené a program automaticky vytvoří potřebnou strukturu křemíkového optického prvku pro výrobu.

Klepněte pro větší obrázek
Replika prvního tranzistoru z roku 1947. Takhle vypadají začátky (Zdroj: Inventing Europe)

I když se Intel už v minulosti vyjádřil, že využití fotonů pro logické výpočty, potažmo i kvantové procesory jsou ještě daleko, lze pozorovat přípravu na takové řešení, které umožní zase výkonnější a úspornější čipy. A to i při použití starší výrobní technologie. Stačí se podívat, jak obří byl první tranzistor.

Témata článku: Technologie, Čipy, Hoffman, Success, Alexander

24 komentářů

Nejnovější komentáře

  • martin.pohl 31. 5. 2015 11:41:46
    Javurku, proc opisujes clanky, kterym zjevne NEROZUMIS??? Cele Zive jde...
  • Pavel Černík 31. 5. 2015 3:11:11
    Hlavni problem optickych prvku je velikostni limit. Aby svetlo mohlo nekde...
  • Dr.No64 30. 5. 2015 20:27:47
    to mel Android Data ze Star Treku ne ? to byla ta film kde tam kempovali...
Určitě si přečtěte

Sbíječky vyměnili za klávesnice. Nový projekt má za cíl přeučit horníky na programátory

Sbíječky vyměnili za klávesnice. Nový projekt má za cíl přeučit horníky na programátory

** Programátorů je málo a horníků bez práce po uzavření dolu Paskov bude moc ** Problém řeší unikátní projekt ** Pilotní kurz dává naději, že by z horníků mohli být použitelní kodéři

28.  11.  2016 | David Polesný | 78

ASUS ZenBook 3 se začal prodávat v Česku. Je ve všem lepší než MacBook, ale bude to stačit?

ASUS ZenBook 3 se začal prodávat v Česku. Je ve všem lepší než MacBook, ale bude to stačit?

** Novinka od Asusu míří přímo proti MacBooku od Applu ** Nabídne daleko více výkonu za stejné peníze

2.  12.  2016 | David Polesný | 119